Квантовая физика может быть даже страннее, чем вы думаете

Новый эксперимент может пролить свет на удивительную скрытую механику квантовых суперпозиций

Автор: Филипп Бал

Суперпозиция — понятие о том, что крошечные объекты могут существовать в нескольких местах или состояниях одновременно — является краеугольным камнем квантовой физики. Новый эксперимент пытается пролить свет на это загадочное явление.

Главный вопрос в квантовой механике, на который никто не знает ответа: что на самом деле происходит в суперпозиции — своеобразном состоянии, в котором частицы находятся в двух или более местах или состояниях одновременно? Группа исследователей из Израиля и Японии предложила эксперимент, который, наконец, позволит нам узнать что-то точное о природе этого загадочного явления.

Их эксперимент, который, по словам исследователей, может быть выполнен в течение нескольких месяцев, должен позволить ученым понять, где фактически находится объект — в конкретном случае частица света, называемая фотоном — когда она находится в суперпозиции. И исследователи предсказывают, что ответ будет еще более странным и шокирующим, чем «два места сразу».

Классический пример суперпозиции включает в себя обстрел фотонов сквозь две параллельные щели в барьере. Одним из фундаментальных аспектов квантовой механики является то, что крошечные частицы могут вести себя подобно волнам, так что те, которые проходят через одну щель, «мешают» тем, кто проходит через другую, их волнистые ряби, увеличивая или меняя друг друга, создают характерную структуру на экране детектора. Странная вещь, однако, заключается в том, что это вмешательство происходит, даже если одновременно выстреливается только одна частица. Частица как бы проходит через обе щели сразу. Это и есть суперпозиция.

И это очень странно: измерение того, через какую именно щель преодолевает частица, неизменно указывает на то, что она проходит только через одну щель, и в таком случае волновая интерференция («квантовость», если хотите) исчезает. Сам акт измерения, похоже, «разрушает» суперпозицию. «Мы знаем, что в суперпозиции происходит нечто странное» — говорит физик Авшалом Элицер из израильского института перспективных исследований. «Но вы не можете это измерить. Это то, что делает квантовую механику настолько загадочной».

На протяжении десятилетий исследователи останавливались в этом очевидном тупике. Они не могут точно сказать, что такое суперпозиция, не наблюдая за ней; но если они попытаются взглянуть на неё, она исчезнет. Одно из возможных решений, разработанных бывшим наставником Элицура, израильским физиком Якиром Ааароновым в Университете Чепмена и его сотрудниками, предлагает способ узнать что-то о квантовых частицах перед измерением. Ахароновский подход называется формализмом двух состояний (TSVF) квантовой механики, а постулаты квантовых событий в некотором смысле определяются квантовыми состояниями не только в прошлом, но и в будущем. То есть, TSVF предполагает, что квантовая механика работает одинаково как вперед, так и назад во времени. С этой точки зрения причины, по-видимому, могут распространяться назад во времени, возникающие после эффектов.

Но не нужно воспринимать это странное понятие буквально. Скорее всего, в TSVF можно получить ретроспективное знание о том, что произошло в квантовой системе: вместо того, чтобы просто измерять, где заканчивается частица, исследователь выбирает конкретное место для поиска. Это называется post-selection, и оно предоставляет больше информации, чем любой безусловный взгляд на результаты. Это связано с тем, что состояние частицы в любой момент оценивается ретроспективно в свете всей ее истории вплоть до измерения, включая измерение. Получается, что исследователь — просто выбрав для поиска конкретный результат — затем приходит к выводу, что результат должен произойти. Это немного похоже на то, как если вы включаете телевизор в момент, когда должна транслироваться ваша любимая программа, но само ваше действие заставляет эту программу транслироваться в этот самый момент. «Общепризнано, что TSVF математически эквивалентен стандартной квантовой механике» — говорит Дэвид Уоллес, философ науки в Университете Южной Калифорнии, специализирующийся на интерпретации квантовой механики. «Но это приводит к тому, что некоторые вещи не видят иначе».

Возьмем, к примеру, вариант двухсекундного эксперимента, разработанного Аароновым и сотрудником Левом Вайдманом в 2003 году, который они интерпретировали с помощью TSVF. Пара описала (но не построила) оптическую систему, в которой один фотон действует как «затвор», который закрывает щель, заставляя другой «пробный» фотон приближаться к щели, чтобы отражаться так, как она появилась. После измерений пробного фотона, как показали Ахаронов и Вайдман, можно заметить фотоснимок затвора в суперпозиции, закрывающей одновременно (или даже произвольно много) щелей одновременно. Другими словами, этот мысленный эксперимент в теории позволил бы с уверенностью сказать, что фотон затвора одновременно находится «здесь» и «там». Хотя эта ситуация кажется парадоксальной из нашего повседневного опыта, это один хорошо изученный аспект так называемых «нелокальных» свойств квантовых частиц, где все понятие четко определенного положения в космосе растворяется.

В 2016 году физики Рио Окамото и Шигеки Такеучи из Киотского университета экспериментально подтвердили предсказания Ааронова и Вайдмана, используя светопроводящую схему, в которой фотосъемка затвора создается с помощью квантового маршрутизатора, устройства, которое позволяет одному фотону управлять маршрутом другого. «Это был новаторский эксперимент, который позволил установить одновременное положение частицы в двух местах» — говорит коллега Элицура Элиаху Коэн из Оттавского университета в Онтарио.

Теперь Элицур и Коэн объединились с Окамото и Такеучи, чтобы придумать еще более умопомрачительный эксперимент. Они считают, что это позволит исследователям с уверенностью узнать больше о расположении частицы в суперпозиции в последовательности разных точек времени до того, как будут сделаны какие-либо фактические измерения.

На этот раз маршрут зондового фотона будет разделен на три части зеркалами. Вдоль каждого из этих путей он может взаимодействовать с фотоном затвора в суперпозиции. Эти взаимодействия можно считать выполненными в коробках с надписью A, B и C, каждая из которых расположена вдоль каждого из трех возможных путей фотона. Рассматривая самоинтерференцию зондового фотона, можно будет ретроспективно заключить с уверенностью, что частица затвора находилась в данном ящике в определенное время.

Эксперимент сконструирован таким образом, чтобы пробный фотон мог показывать только интерференцию в случае взаимодействия с фотоном затвора в определенной последовательности мест и времен: а именно, если фотон затвора находился в обоих блоках A и C в некоторый момент времени (t1), то при более позднем времени (t2) — только в C и еще в более позднее время (t3) — как в B, так и в C. Таким образом, интерференция в зондирующем фотоне была бы окончательным признаком того, что фотон затвора действительно проходит через эту странную последовательность разрозненных явлений среди ящиков в разное время — идея Элицура, Коэна и Ааронова, которые в прошлом году предположили, что одна частица одновременно проходит по трем ящикам. «Мне нравится, как эта статья ставит вопросы о том, что происходит с точки зрения целых историй, а не мгновенных состояний», — говорит физик Кен Уортон из Университета штата Сан-Хосе, который не участвует в новом проекте. «Говорить о «состояниях»- это старая повсеместная предвзятость, тогда как полные истории, как правило, гораздо более богаты и интересны».

Это именно то, к чему, по утверждению Элицура дает доступ новый эксперимент с TSVF. Очевидное исчезновение частиц в одном месте за один раз — и их повторное появление в других местах и времени — предполагает новое и необычное видение лежащих в основе процессов, связанных с нелокальным существованием квантовых частиц. Благодаря объективу TSVF, говорит Элицур, это мерцающее, постоянно меняющееся существование можно понять как серию событий, в которых присутствие частицы в одном месте каким-то образом «отменяется» своей собственной «противоположной стороной» в том же месте. Он сравнивает это с понятием, введенным британским физиком Полом Дираком в 1920-х годах, который утверждал, что частицы обладают античастицами, и, если их собрать вместе, частица и античастица могут уничтожить друг друга. Эта картина сначала казалась просто манерой говорить, но вскоре привела к открытию антиматерии. Исчезновение квантовых частиц не является «аннигиляцией» в этом же смысле, но оно несколько аналогично — эти предполагаемые противоположные частицы, полагает Элицур, должны обладать отрицательной энергией и отрицательной массой, позволяя им отменить их аналоги.

Поэтому, хотя традиционные «два места одновременно» суперпозиции могут казаться довольно странными, «возможно, суперпозиция представляет собой совокупность состояний, которые еще более сумасшедшие» — говорит Элицур. «Квантовая механика просто рассказывает вам об их среднем состоянии». Последующий выбор позволяет изолировать и проверить только некоторые из этих состояний с большим разрешением, предполагает он. Такая интерпретация квантового поведения была бы, по его словам, «революционной», потому что это повлекло бы за собой до сих пор недопустимый зверинец реальных (но очень странных) состояний, лежащих в основе противоречивых квантовых явлений.

Исследователи говорят, что проведение фактического эксперимента потребует тонкой настройки производительности их квантовых маршрутизаторов, но они надеются, что их система будет готова к нему через три-пять месяцев. Пока некоторые наблюдатели ожидают его с замиранием сердца. «Эксперимент должен работать, — говорит Уортон, — но он никого не убедит, поскольку результаты прогнозируются стандартной квантовой механикой». Другими словами, не нет веских оснований интерпретировать результат в терминах TSVF.

Элицур соглашается, что их эксперимент мог быть задуман с использованием общепринятого взгляда на квантовую механику, которая царила десятилетия назад, но этого никогда не было. «Разве это не является хорошим показателем надежности TSVF?» — спрашивает он. И если кто-то подумает, что они могут сформулировать другую картину того «что действительно происходит» в этом эксперименте, используя стандартную квантовую механику, он добавляет: «Хорошо, пусть они попробуют!»

Оригинал: Scientific American

Похожие Записи

Последние <span>истории</span>

Поиск описаний функциональности, введя ключевое слово и нажмите enter, чтобы начать поиск.

Send this to friend